segunda-feira, 21 de outubro de 2013

Referencial



No século dezenove, os cientistas trabalharam com a hipótese da existência do éter por duas razões:

Primeira, parecia não haver alternativa, se a luz é constituída por ondas transversais;

Segunda, o éter era o meio de referência (ponto de referência) em relação ao qual a velocidade da luz é medida.
(Esta possibilidade é similar ao que ocorre com o som, pois usualmente se determina a velocidade do som em relação ao ar, que é o meio de propagação das ondas sonoras).
   A segunda razão é extremamente importante, pois sem um meio de referência, a ideia de movimento se torna vaga e os conceitos fundamentais, que impulsionaram o desenvolvimento da física do século dezenove, ficam estremecidos.
   Para explicar a necessidade de um referencial para definir o movimento, suponha um passageiro em um trem que pode se mover, ao longo de uma linha perfeitamente reta, com velocidade uniforme e sem qualquer vibração.
   Usualmente, um passageiro pode perceber o movimento pelas vibrações, ou pelos efeitos inerciais quando a velocidade aumenta ou diminui, ou nas curvas. Todavia, com o trem se movendo uniformemente e sem vibrações, os efeitos inerciais são eliminados, os métodos usuais para se perceber o movimento são ineficientes.
   Agora, imagine que há uma janela no trem através da qual o passageiro pode ver outro trem que se move em uma linha paralela. Há também uma janela no outro trem e um passageiro de um dos trens olha o passageiro do outro trem. Neste caso, um passageiro pode ligar para o celular do outro e perguntar, “Estou em movimento?”.
   O passageiro, que recebe a ligação, olha e verifica que o passageiro do outro trem está imóvel e responde “Não, você está parado.” Mas se o passageiro saltar pela janela, ele certamente morrerá imediatamente, pois ambos os trens estão se movendo no mesmo sentido com uma velocidade de 100km/h, em relação a um observador que está parado na estação. 
   Como ambos os trens estão se movendo no mesmo sentido e com a mesma velocidade, a posição de um em relação ao outro não se altera, e o passageiro de um dos trens parece estar parado em relação ao outro.
   Se houvesse uma janela no outro lado, em cada um dos trens, os passageiros de ambos os trens poderiam olhar para a paisagem e observar que ela estaria se movendo para trás dos trens. Como supomos automaticamente que a paisagem não se move, a conclusão óbvia seria de que o trem está em movimento, embora ele não pareça estar se movendo.
   Outra possibilidade seria o trem B estar parado, enquanto o trem A se move para frente com uma velocidade de 10km/h. Ou ainda, o trem A pode estar se movendo para frente à 5km/h enquanto o trem B se move para trás à 5km/h. Ambos os trens podem estar se movendo para frente: o trem A se move a 100km/h e o trem B se move a 90km/h. Há ainda uma infinidade de movimentos possíveis em relação à superfície da Terra.
   Devido a um hábito muito antigo, as pessoas tendem a minimizar a importância do movimento de um trem em relação ao outro. Elas consideram o movimento em relação à superfície da Terra como sendo o movimento “real”.
   Mas isto é verdade? Suponha que um passageiro em um trem que se move a 100km/h deixa cair uma moeda. Este passageiro observa a moeda cair em linha reta na vertical até atingir o assoalho do trem. Uma pessoa parada na estação (supondo a lateral do vagão do trem transparente), observando o trem passar, verifica que a moeda tem dois tipos de movimento.
   Ela cai com uma velocidade acelerada devido à força gravitacional e se move para frente acompanhando o movimento do trem. O efeito resultante dos dois movimentos é uma trajetória parabólica observada pela pessoa parada na estação.
   Conclusão, a moeda se move em trajetória retilínea em relação ao trem, e ao longo de uma parábola em relação à superfície da Terra. Neste caso qual é o movimento “real”? A parábola?  O passageiro no trem que deixou a moeda cair pode estar propenso a acreditar que embora ele pareça estar parado, ele “realmente” está se movendo a 100km/h. Mas ele também pode não acreditar que a moeda que ele vê cair em linha reta possa estar “realmente” se movendo ao longo de uma parábola.

Nenhum comentário:

Postar um comentário